一般来说,作为激光工作物质的基体材料应具有以下特征:(1)良好的光学性能。基体材料应具有宽的传输线和高的透光率,以满足激光输出的需要。(2) 良好的力学和热力学性能。基体应具有高的机械强度和导热性,小的热膨胀系数和稳定的热光性能。由于激光会产生大量的热能和一系列的热效应,从而影响激光的振荡阈值,甚至损害工作物质的质量,所以热力学性能对于激光工作物质来说非常重要。(3)可以为活性离子提供合适的掺杂位置。为了获得不同功率的不同种类的激光输出,需要一定浓度的活化离子,因此基体材料应该具有与活化离子半径相近的元素,以保证活化离子能够顺利进入晶格。(4)易于准备。可以在保证光学质量的前提下制备掺杂材料。TmYAP 的 H4 和 F4 能级的自淬灭机制可在上能级产生双光子。浙江LD泵浦TmYAP晶体定制
掺Tm3钨酸盐晶体是近年来研究较多的一种激光晶体。常见的有Tm:KY(WO4)2(Tm:KYW)、Tm:KGd(WO4)2(Tm:KGdW)、Tm:KLu(WO4)2(Tm:KLuW)等。KReW属于单斜双轴晶体,其作为激光基质的优点是:离子间距大,易于实现高浓度掺杂,猝灭浓度低。吸收发射峰宽,吸收发射截面大。3H63H4的吸收峰在800nm后达到峰值,更有利于使用商用二极管作为泵浦源,而较大的增益截面和较短的上能级寿命有利于被动锁模激光实验。掺Tm3钨酸盐晶体的激光实验在KYW晶体上进行。甘肃LD泵浦TmYAP晶体元件TmYAP晶体795nm泵浦吸收带比常用的。
半导体中的稀土稀土金属,稀有金属和稀散金属共同组成了“三稀金属”,而三稀金属被应用在工业领域的各个方面,尤其是半导体产业。比如第二代半导体材料砷化镓,碲化铟,第三代半导体材料氮化镓等,此外稀土金属还在抛光、靶材、激光灯方面,以其优异的物理和化学属性发挥着巨大作用。稀土常被用作抛光材料,氧化铈是抛光粉较常用的材料,其中高铈抛光粉主要用于石英、光学镜头等硬质玻璃长时间循环抛光;中铈抛光粉用于中等精度的光学镜头及液晶显示器等工件的抛光;低铈抛光粉主要用于平板、显像管玻璃等抛光。
Tm:YAP晶体基体干扰小。在原子吸收光谱分析中,经常会遇到形成稳定化合物的干扰,在ICP光谱分析中可以忽略,电离干扰不明显,可以用一套标准溶液来分析各种样品溶液。多元素可以同时测定,样品中的主要成分、次要成分和微量成分可以同时测定。可测量的元素有很多种(约80种)。目前,电感耦合等离子体原子发射光谱法已成为同时测定多种无机元素的有力工具.该方法在我们的实验中主要是用于测定晶体中掺杂元素的含量,采用的等离子体发射光谱仪型号为Advantage。样品为少量晶体研磨成尽可能细的粉末,测定元素含量时需将样品溶解配成溶液。计算晶体中掺杂离子的分凝系数,取样位置一般位于籽晶与晶体相接处以下,靠近晶体顶部的部分。掺铥钇铝石榴石晶体棒的直径为从2mm到7mm,棒的长度达100mm。
由于Tm:YAP的各向异性,对3F4→3H6跃迁的发射截面,我们采用F-L公式以及偏振发射谱进行了计算。F-L公式可表示为:(4-3)式中c为光速,λ为波长,I(λ)为荧光光谱上某一波长λ处的荧光强度,n为折射率,τrad为上能级辐射寿命。5at%Tm:YAP各偏振方向发射截面计算结果如图4-19所示,其中E//a方向在1934nm具有比较大发射截面4.5×10-21cm2,接近于报道数据5.0×10-21cm2。3at%Tm:YAP、4at%Tm:YAP、5at%Tm:YAP晶体E//a发射截面在1934nm处基本相同。TmYAP晶体发出的激光波长与晶体方向有关。福建锁膜TmYAP晶体型号
2μm波段激光输出效率高于Tm:YAG晶体,直接输出线偏振激光。浙江LD泵浦TmYAP晶体定制
近年来随着激光技术的快速发展和激光器件的不断增加,可供临床使用的激光种类也越来越多,无论是从高功率连续激光到飞秒超短脉冲激光,还是从深紫外激光到中红外激光,无不在外科手术、疾病诊断、美容保健等方面表现出重要的应用潜力。因此在选用医用激光器时,应根据不同的临床需求并结合激光器件的较新发展,确定较适合的激光参数及指标,从而对医用激光器做出合理而实用的选择。Tm:YAP晶体的常温荧光谱及荧光寿命3at%Tm:YAP的不同方向偏振荧光特性。在2mm波段Tm:YAP有比较宽的发射带(1600nm-2150nm),有利于实现调谐激光输出,而E//a发射谱在1940nm处具有较强发射峰。浙江LD泵浦TmYAP晶体定制